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ABSTRACT 

The probability of instability for 2-dimensional plane shear failure of a slope is a function of the shear 
strength, orientation, and length of the fracture forming the potential failure mode. 

The orobability that a fracture has a dip within a given range (Po) and also a sufficient length in that 
orientation to reach from the toe to the top of the slope (PL)• can be calculated from dip and length distribu­
tions obtained from field mapping. Using a rigid block analysis, the probability of sliding can be calculated 
by ~·onte Carlo sampling of the shear strength and fracture roughness distributions to deter~ine the distribution 
of safety factors. The area of the safety factor distribution less than 1 is the probability of sliding (Ps). 

The probability of instability along a single, planar surface i~ the composite probability of dip, length, 
and sliding, surrmed over the range of possible daylighted dips: 

N 
i:: Ps r0. PL. , where N = the nu11Jber of dip increments. 

i =1 i 1 1 

This probability of failure is for single pl~nG shear sliding anc does not take into account the number of possi­
ble failure planes or other failure moJes. 

INTRODUCTION 

Slope instability from rock sliding along a single 
failure plane can be analyzed to determine the proba­
bility of slope failure. 

Variability in estimates of rock mass properties 
and rock strength measurements implies the probabi­
listic nature of geologic phenomenon. A design 
based on average values or on a single value does 
not account for this variability. A high safety fac­
tor ~ight be calculated by using average values for 
the geologic parameters, but because of the varia-
bi ~ i ty shown by the di stri but ions of these parameters, 
a high probability of failure may also be present 
(Hoeg and Murarka, 1974).l In addition, it is diffi­
cult to incorporate the traditional safety factor 
calculation into an economic analysis. The proba­
bility of instability, however, can be used with an 
economic risk analysis to determine an economic 
optimum design that considers the cost impact of 
fJilure (Kim and others, 1976).2 

GEOLOGIC STRUCTURE 

The simole plane shear failure geometry is 
anaiyzed to determine the probability of failure 
(F;g•Jre !) . The geologic structure must occur in an 
orientation that makes t1is failure mode viable. 
Previous field mapping and subsequent data reduction 
provide the statistical distributions of joint set 
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FIGURE l, PLANE SHEAR GEOMETRY 

length, spacing, r~ughness, and dip (Figure 2) (Call 
and others, 1977). 

Occurrences of joint lengths within the same joint 
set are considered as independent events. The cumu­
lative distribution of these lengths is assumed to 
be negative exponential. The cumulative distributions 
of spacing between joints and of roughness on the 
joint surfaces are also assumed to be independent and 
negative exponential distributions. Joint dips ~thin 
a given joint set are considered to be independent 
events and normally distributed. These statistical 
distributions of the joint set properties are used 
to model the occurrence of the failure plane. 
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FIGURE 2. TYPICAL DISTRIBUTIONS OF JOI~T SET CHARACTERISTICS 

SHEAR STRENGTH 

The required shear strength properties on the 
failure plane are determined by laboratory direct 
shear testing of joint surfaces. After primary 
reduction of test data to obtain a series of points 
representing shear strengths versus normal stresses, 
a curve is fit to the data. The Mohr-Coulomb 
straight line fit is most common: 

where: 

c + an Tan ,~ 

shear strength 
normal stress 
cohesion 
friction angle 

(1) 

For samples tested under high normal stresses .or when 

an ex:reme range of nonnal stresses is anticipated, 
the piwer failure criteria may be preferable: 

T = shear strength 
Jn = normal stress 

K~M curve parameters 

(2) 

This analysis uses the power failure law. The 
power curve is fit to the data by regression so as 
to mi 1imize the squared error of the shear stresses 
over :he range of the data. For any given normal 
stres ;, the mean exoected shear strength at that 
norma, stress is predicted by equation (2). 

Testing uncertainties and natural variabilities 
in the fracture surface cause some dispersion of 

2 



John M. Marek and James P. Savely 

shear strengths about the mean for any given normal 
stress. This dispersion about the mean must be 
quantified to determine the probability of failure. 

For a sample of a single joint, the variability 
of the mean shear strength can be expressed by cal­
culating the relationship between the variance of 
the mean shear strength and the applied normal stress: 

2 I = s2 rl + (ao - an)2 
s ['I 0 n1 N (N-1) s2an (3) 

where: 

applied normal stress 
=mean normal stress 

ao 
on 

s2r:rJanJ 

s2 

variance of mean shear strengths 
given a normal stress 
mean squared error of T given 
an (from regression) 
number of points 
variance of the applied normal 
stresses · 

The standard deviation of shear strength for a given 
normal stres~ is equal to the square root of equation 
(3). The equation is used for only one joint sample; 
if several samples are considered, they are treated 
independently and the variation in mean shear strength 
is calculated from the mean power curve fit to each 
sample. 

For example, if 6 samples of joints are tested, 6 
power curves are generated, 1 for each sample. These 
6 power curves are then combined into 1 new power 
curve to determine the new mean strength relationship. 

The variation of the mean shear strength is deter­
mined by calculating a new standard deviation about 
the new mean curve. The standard deviation of shear 
strength varies with the normal stress, and can be 
approximated with a linear relationship. The form 
of the equation is: 

vihere: 

n 
A&B 

standard deviation of mean shear 
strength given a an 
normal stress 
linear regression parameters fit 
as an approximation 

(4) 

Once the standard deviation of the mean is esti­
mated, the shear strength distribution at a given 
applied normal stress can be defined. The applied 
normal stress is determined from the geometry of the 
s 1 ope and the failure plane. This normal stress is 
used i~ equations (5) and (6) to calculate the mean 
shear strength distribution: 

s (rianl 

where: 

T mean shear strength at on 
s(r!anl =standard deviation of the mean 

shear strength given an 

( 5) 

( 6) 

K&M = curve parameters defining 
mean shear strengths 

A&B = parameters of standard deviation 
curve 

The specific details of fitting the power curve 
to the test data are presented in a paper entitled 
"Monte Carlo Simulation of Rotational Shear Analysis" 
by Paul J. Visca and John M. Marek. 

PROBABILITY OF FAILURE CALCULATION 

The probability of plane shear failure is a com­
bination of 2 probabilities: first, the probability 
that the failure plane exists (Pc), and second, the 
probability that sliding on the failure plane occurs 
{P5 ). The equation for the probability of plane 
shear failure is:~ 

PF = f PE P5 dx, integrated over all (7) 
orientations (x) 

This is the joint probability that a fracture is 
present and that sliding occurs, summed over all 
possible joint orientations. In the plane shear 
analysis, many orientations are not considered 
because their probabilities of sliding are zero. 
Only those joint sets with strikes that parallel the 
slope ~ace and dips that could be daylighted are con­
sidered. In reality, the integral is approximated 
by: 

(8) 

where the summation in i is taken over a discrete 
set of dips with a range between zero and the slope 
face angle. 

The summation of equation (8) is valid for any 
failure mode. For the plane shear condition, the 
probability of existence is the joint probability of 
2 occurrences: 

(9) 

That is, the joint probability that the fracture has 
a certain dip attitude and that the fracture is long 
enough to reach from the toe to the top surface of 
the slope at that particular dip. The probability 
of length (PL) is determined directly from the cumu­
lative length distribution (Figure 2). For any dip 
in the joint set, a certain fracture length is 
required to reach from the toe to the top surface 

3 

of the slope. The probability of meeting or excePding 
this length is determined directly from the length 
distribution. 

The probability of failure becomes: 

PF = ~ Po. PL. Ps. 
1 1 1 1 

(10) 

summed over a selected range of dips. This surraned 
approximation to the integral, equation (8), is 
done in the following manner. 

The slope face angle and the flattest dip to te 
considered are indicated on the normal distribution 
of f~acture dips (Figure 3). The rock on rock 
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friction angle minus 2 standard deviations can be 
used as a guide in selecting the flattest dip for 
input in the calculations. The area between the 
slope ang1e and the flattest dip is then divided 
into equal cells, generally in 2 degree increments 
(Figure 3). The probability of dip (Po;) is the 
probability that a dip falls within 1 of these cells. 
The probability of sliding (Ps·l is calculated using 
the mid-point dip of the cell. 1 

For example, within cell 5, P0. =. 15 and Ps. is 
calculated for a 35° dip angle. 1 PL. is determ~ned 
by calculating the length required 1 for a fracture 
of 35° dip to reach from the toe to the top surface 
of the s1ope. Then the probability of meeting or 
exceeding that length is determined from the length 
distribution. 

8 
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MEAN DIP = 38° 
STANDARD DEVIATION = 4° 

1 0 

PROBABILITY OF CELL 5 .149 
MID-POINT DIP OF CELL 5 = 35° 
FLATTEST DIP = 26° 
SLOPE FACE = 50° 

FIGURE 3. DIP DISTRIBUTION DIVIDED INTO CELLS 

The probability of failure summation now becomes: 

PF 

# Dip 
Cells 

i:: 
i=l 

( 11) 

PO; and PL· were calculated from their distributions. 
Given that 1 the fracture is present, the probability 
of sliding (Psi) is then calculated. 

PROBABILITY OF SLIDING 

Determination of th~ probability of sliding (P5.l 
uses ~ante Carlo sampling. The geometry is 1 

determined by the slooe face angle, the slope height, 
and the dip angle from the cell divisions (Figure 3). 
A different probability of sliding is calculated for 
the l'lid-ooint dip of each cell. 

To analyze olane shear geometry, the normal stress 
and the driving stress are calculated on the failure 
plane. Ar.y reduction of the effe~tive normal stress 
due to pore pressure is considered at this time. 

The actual ~ante Carlo process now samples the 
mean shear strength and roughness distributions (usu-

ally 200 iterations). These 2 strength components 
are summed to determine a total resisting stress. 
The ratio of each resisting stress divided by the -
driving stress determines a factor of safety. The· 
resulting statistical distribution of safety factors 
varies in form depending on the characteristics of 
the input data. The percentage of safety factors 
with values less than 1 equals the probability of 
s 1 id i ng ( P 5 . ) • 

1 

4 

The variation in form of the safety factor distri­
bution is primarily a function of roughness. If no 
surface roughness is present (that is, mean roughness 
angle= 0), the safety factor distribution is normally 
distributed because the shear strength distribution 
is al~.o normally distributed. As more surface rough­
ness is added to the shear surface (that is, mean 
rough~ess > 0), the resulting safety factor distribu­
tion t·ecomes skewed to the right and no longer behaves 
as a normal distribution. The cumulative roughness 
distribution (Figure 2) is a highly skewed negative 
exponential distribution. It would appear that the 
safety factor distribution that results from the 
roughness and shear strength distributions would also 
be skewed to the right. 

The safety factor distribution appears to be a 
Gamma ~istribution. For simplicity, a count is made 
of the number of safety factors with values less than 
1. Dividing this count by the total number of Monte 
Carlo iterations gives a probability of sliding 
(P5 .). Further work can be done to determine the 
precise distribution of safety factors. 

It should be noted that the Monte Carlo process 
directly samples shear strengths rather than strength 
parameters such as K amd M from the power law, or 
friction angle (~) and cohesion (c) from the linear 
relationship. This direct sampling from the shear 
strength distribution for a given normal stress is 
not affected by the dependence between curve param­
eters. For example, ~and c in the linear case have 
in the past been sam~led as independent variables. 
In reality, there is a non-zero covariance between¢ 
and c, and they are not independent. Sampling¢ and 
c independently creates a wider dispersion in shear 
strengths than that measured in the laboratory. This 
wide shear strength dispersion causes a high disper­
sion in the safety factor distribution. This high 
dispersion will cause overestimation of the probd­
bility of sliding. By sampling shear strengths 
directly, the variability in the shear strengths of 
test samples is tied directly to the variability of 
mean shear strengths in the rock slope. 

Once the probability of sliding is determined 
from Monte Carlo samplinq, the probability of failure 
for the surface can be calculated using equation (11). 

COMPOSITE PROBABILITY OF INSTABILITY 

The fi na 1 probability, PF, is the probability of 
failure for a sinqle plane shear fracture. Where 
jointing is prevalent, there is a possibility of 
multiple failure planes. The next step would be to 
determine the probability that any one of these mul­
tiple planes will fail. Accounting for these planes 
requires the probability of failure, PF, and an 
estimate of the number of failure surfaces that are 
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present in the slope. This number of failure sur­
faces can be estimated from the joint spacing distri­
bution. The composite probability of instability 
must also include the possible occurrences of several 
different failure modes (Call and Kim, 1978).5 

CON CL US IONS 

A probabilistic analysis of the plane shear 
failure mode can be performed if distributions of 
length ar.j dip can be estimated. The probability of 
sliding can be computed from normal stress-shear 
stress curves and the failure geometry. Either the 
Mohr-Coulomb or the power failure criteria can be 
used to represent the shear strength. 

The probability of failure for the surface can 
be calculated using equation (11). Unless the 
analysis is done for a known single fault plane or 
other major structure, the probability that considers 
multiple failure planes must still be determined. 
When plane shear failure along joint sets is con­
sidered, a composite probability of failure should 
be calculated from the estimated number of joint 
planes in the slope. 
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