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ABSTRACT 
Rock mass strength is typically estimated from three fundamental components: intact rock strength, fracture strength, 
and intensity of fracturing. The uncertainties regarding the estimation of rock mass shear strength can also be 
separated into three distinct components: natural variability, statistical uncertainty, and transformation uncertainty. 
The natural spatial variability of geologic materials typically has the greatest impact on the uncertainty of rock mass 
design parameters. If the spatial continuity (autocorrelation) of input variables is not considered, a probabilistic slope 
analysis can result in either over- or under-estimation of the probability of failure. It is well established that the stability 
of a slope is controlled by the total shear resistance along the failure surface, rather than the shear resistance at any 
one individual location. For probabilistic slope analysis, it is therefore appropriate to determine the variance of the 
rock mass strength over the entire potential zone of failure. The variance of the shear strength across the failure 
surface will always be less than the variance of individual small-scale measurements of shear strength at any one 
location on that surface. The scale of fluctuation of each of the three components of rock mass strength (intact 
strength, fracture strength, intensity of fracturing) must be considered in order to estimate the variance of rock mass 
strength over the failure surface area. Intact rock strength and fracture strength typically exhibit a small spatial 
correlation distance relative to typical open pit slope analysis. Therefore, it is proposed that the natural variability for 
these parameters can be disregarded and in most cases only the statistical uncertainty of intact and fracture shear 
strength derived from the total population of representative laboratory tests need to be considered. Conversely, 
intensity of fracturing, as measured by either RQD or the GSI structure rating, tends to exhibit large spatial correlation 
distances relative to typical sampling intervals. A variogram model can be used in conjunction with the variance 
reduction function to characterize the spatial variability of the fracture intensity and to quickly estimate the reduced 
variance due to spatial averaging for use in probabilistic analysis. Examples are provided to demonstrate the value 
of these concepts.  

1. INTRODUCTION 
Accurate evaluation of risk is a fundamental challenge that all geotechnical engineers encounter. The high levels of 
uncertainty associated with in situ geological materials are what differentiate geotechnical engineering from other 
disciplines. Unstable geotechnical structures may cause injury to persons, operational delays, and/or expenses for 
repair. Traditional geotechnical analyses utilize deterministic methods to estimate a factor of safety (FOS), which is 
defined as the ratio of resisting forces to applied loads. However, the factor of safety is not a consistent measure of 
risk (Li and Lumb, 1987); a large range of risk levels may exist for the same factor of safety value. An alternative to 
deterministic analysis is to model important parameters as random variables and estimate a probability of failure. 
The probability of failure (Pf) is defined as the probability that the factor of safety is less than unity. Probabilistic 
methods are becoming more commonplace in geotechnical practice as they permit financial and safety evaluations 
to be addressed quantitatively. 

1.1 THE EFFECT OF SPATIAL AVERAGES IN PROBABILISTIC ANALYSIS 
Virtually all geotechnical properties are of some type of local spatial average (Fenton and Griffiths, 2008). Even a 
laboratory compression test measures the average bond strength of the sample throughout the failure region, not the 
strength at any one single point. Similarly, the stability of a slope is controlled by the total shear resistance along the 
failure surface, rather than the shear resistance at any individual location. The ‘point-to-point’ variability of shear 
strength that is estimated directly from geotechnical tests is typically of very little use to geotechnical engineers (Li 
and Lumb, 1987; Vanmarcke, 2010). 

To demonstrate the effect spatial averaging has on a parameter, let us assume that a random variable u varies with 
distance x, as presented in Figure 1. The spatial average of the property u(x) over the interval T may be written as: 



( 1 ) 

Where: 

u(x) = random variable u as a function of x 
uT(x) = moving spatial average of function u(x) over interval size Τ 
T = size of spatial average 

The integrand is used for continuous fields of data, whereas the summation must be applied to discontinuous data 
fields as are typically encountered in geotechnical engineering. Note that spatial averaging has no effect on the mean 
value of parameter u (Vanmarcke, 2010); however, the variance of the parameter is significantly reduced. The 
process of spatial averaging reduces the variance because fluctuations cancel out during the averaging process and 
deviations from the mean become less extreme. 

Figure 1 Graph of function u(x) and its spatial average over T, uΤ(x) 

Unintended effects occur when the variance of shear strength is not adjusted for model zone size in a slope analysis. 
Consider a 500-meter high rock slope cut at 45 degrees analyzed by two-dimensional probabilistic limit-equilibrium 
methods with Monte Carlo sampling, as shown in Figure 2. Three cases are considered, each with identical rock-
mass properties (same μ and σ of unit weight, cohesion, and friction angle with a normal distribution). The only 
variation between the analyses is the number of geotechnical domains modeled (and therefore, the number of 
independent distributions sampled). All three cases result in the same FOS value as expected, however the estimated 
Pf varies by a factor of eight. Following this logic, if a practitioner wishes to significantly lower the estimated Pf he or 
she must only create a geotechnical model with more material subdivisions. As the number of independent 
distributions sampled increases, the probability of the average strength along the critical slip surface deviating 
significantly from the mean decreases; the spatial averaging of the additional distributions will tend to cancel out 
fluctuations. To properly estimate Pf, the variance of the parameters must be adjusted based on the spatial extent of 
the zone being analyzed.  The appropriate standard deviation for a geotechnical parameter is directly related to the 
size of the model zone (i.e., the size of the spatial average). 
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                                  (a) One rock unit                                                            (b) Two rock units 

      
                                  (c) Five rock units                                                                       (d) 

Figure 2. Limit equilibrium analysis of a 500-meter high 45-degree slope with properties unit weight μ=26.5 
kN/m3 σ=0, cohesion μ=360 kPa σ=40 kPa, and friction angle μ=33 degrees σ=2 degrees, sampling a) One 
rock unit, b) Two rock units, c) Five rock units, and d) Plot of probability of failure versus number of 
distributions sampled 

In order to quantify and predict the reduction in variance due to spatial averaging, an additional parameter is required 
beyond the mean and variance. The parameter is called the scale of fluctuation (θ) (or correlation distance), and 
defines the distance of spatial correlation, or the distance within which the parameter shows relatively strong 
correlation and beyond which shows no correlation (Vanmarcke, 2010). It characterizes how rapidly the property 
varies in space. Two points that lie within a distance of θ are likely either to be both above, or both below the mean 
value. The θ value is synonymous with the ‘range’ parameter familiar to geostatisticians. 

The scale of fluctuation can be roughly estimated from a one-dimensional line plot as the average distance between 
intersections of the fluctuating property and its mean multiplied by 1.25 (Vanmarcke, 2010). For example, in Figure 
1 there are twelve total mean crossings of the function u(x) (black line). This method of estimating θ becomes more 
challenging in three dimensions when discontinuous and randomly spaced data fields are encountered as is typical 
in geotechnical data; more robust estimation methods are described in the following sections. 

The θ value can be used in conjunction with the variance reduction function to quickly estimate the reduced variance 
due to spatial averaging for use in probabilistic analysis. Combined with the two other sources of uncertainty 
(statistical and transformation), the variability of rock mass strength can be estimated for use in geotechnical analysis. 
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2. SOURCES OF UNCERTAINTY
In a probabilistic analysis, rock mass parameters are modeled as random variables so that the full range of possible 
outcomes may be investigated. Three distinct components contribute to the total uncertainty of a rock mass 
parameter estimate: natural variability, statistical uncertainty, and transformation model uncertainty, as summarized 
in Figure 3. 

Figure 3 Sources of uncertainty in rock-mass property estimates (after Phoon and Kulhawy, 1999) 

The uncertainty of each rock-mass input parameter must be quantified independently before a transformation 
model is applied to estimate the desired rock mass property. The total variance of an input parameter (������� ) is 
estimated using equation 2, where ��(�) is the variance reduction function evaluated over area A (or if applicable, 
over a length or volume), ��� is the long-scale variance, and ��� is the variance of the mean. The variance reduction 
function ranges from 0 to 1, and converts the ‘point-to-point’ variance to the variance of a spatial average over area 
A. 

������� � ��(�) � ��� � ���  ( 2 ) 

The total variance of a rock mass parameter is dependent upon the variance of each input parameter (estimated 
with equation 2) and of the uncertainty of the transformation model itself (���), as summarized in Figure 4. 

The three different sources of uncertainty are defined and discussed in the following sections. 
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Figure 4. Workflow to determine variance of a rock mass parameter 

2.1. NATURAL VARIABILITY 
Natural variability is the in situ variation of geological properties from one point to another, and is also referred to as 
spatial variability, inherent variability, or simply ‘data scatter.’ Univariate statistics are the primary method to evaluate 
and describe the natural variability of a dataset; examples of univariate statistical analysis include the mean, median, 
standard deviation, and frequency histogram. 



Univariate statistics reveal the measured distribution of values, but tell us nothing of how the measured property 
varies through space. Figure 5 presents two different two-dimensional data fields (modeled after El-Ramly et al., 
2002) of the rock-mass index parameter GSI (geological strength index) (Hoek et al., 2002). The data sets have 
nearly identical univariate statistics of μ, σ, and frequency distribution (shown on left), however, their spatial 
distribution of values is drastically different. The θ distance is significantly larger for case B (the zones of high and 
low values are much larger in case B). If an analysis for a tunnel excavation was conducted for each case, the Pf 
would be higher for a tunnel excavated in case B than case A since the probability of encountering a large zone in 
which the majority of GSI values are below the mean is significantly greater for case B.  

Figure 5. Two random fields of GSI with different spatial distribution properties but similar mean, point 
standard deviation, and probability density function 

2.1.1 Spatial Characterization of Natural Variability Using the Variogram 
The variogram (also referred to as the semi-variogram) allows us to evaluate not just the value of a measurement, 
but also the location of that measurement. The variogram describes how related (correlated) data points are to each 
other at different separation distances, referred to as ‘lag’ distances.  It is a measure of dissimilarity, where a result 
of zero implies perfect correlation and increasing variance values indicate less correlation. The variogram is the 
preferred simple estimator of spatial continuity because it is unbiased and does not require any assumptions about 
the dataset – unlike the autocorrelation function, which requires an estimate of the mean in order to calculate (Fenton 
and Griffiths, 2008). 

Geotechnical data is usually first grouped into lag ‘bins’ of similar separation distance; this is required because 
geotechnical data is often spaced at irregular intervals. The tolerance limits on the bins should be small enough to 
maintain resolution of the variogram, yet large enough so that the variogram shape is stable (Cressie, 1991). The 
experimental variogram of the random variable u at lag bin distance τ is defined as: 
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where N represents the total number of data pairs within the specified lag distance tolerance.  

Once the experimental variogram is calculated, a model variogram is fit to the experimental data. A continuous 
variogram model is required for variance reduction calculations and also for spatial interpolation (kriging). In the 
author’s experience, most geotechnical data fits very well to the exponential variogram model, which is defined as: 

�(�) = ��� � ��� ( 1 � �� �|�|
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( 4 ) 

An example experimental data set and exponential variogram model are shown in Figure 6. The lag distance and 
semi-variance has been normalized to make the plot universal. 

A typical variogram may be described by the following components: 

 The Scale of Fluctuation (θ). The lag distance within which the parameter shows relatively strong correlation
and beyond which shows very low correlation. It is approximately the lag distance at which the variance no
longer increases, or, ‘levels off.’ The θ distance is synonymous with the ‘range’ parameter familiar to
geostatisticians. A flat variogram implies that either the data is not spatially correlated, or it is correlated only
at distances smaller than the closest sample spacing.

 The Sill (σ2N+ σ2V) is the semi-variance that is measured when only data pairs separated by large enough
lag distances to be considered independent are compared. Data pairs separated by this distance or greater
are no longer correlated. Once the sill is reached, data points separated by this distance are effectively
‘independent’ from each other.

 The Nugget (σ2N) is the vertical axis intercept of the variogram at a lag distance of zero. The ‘nugget effect’
can be induced by many different sources: correlation at distances smaller than the closest sample spacing
(short-scale variation), measurement error, positional error, or inherent randomness. Under normal
circumstances, it is not possible to determine which source or combination of sources causes the nugget
effect. Very smooth data fields tend to have a small nugget value, and erratic data fields a large nugget value.
The term nugget effect is said to originate from the micro-variability caused by one grade sample that could
contain a gold nugget, while the sample directly adjacent to it could be barren and therefore cause high semi-
variance at small lags.

Figure 6. Example of the exponential variogram model with nugget effect 



2.1.2. The Variance Reduction Function 
As discussed in Section 1.0, the variance of a parameter is reduced as the size of the spatial average of that 
parameter increases. The maximum variance is obtained with the ‘point-to-point’ estimate, and the variance 
approaches zero as the spatial average size grows to infinity; however, we are typically interested in the value of the 
variance in between these two cases. The dimensionless function ��(T) defines the reduction of the point variance 
(σ2) due to a spatial average of length T. The variance reduction function lies between 0 and 1, has a value of 1.0 
when T = 0, and approaches zero as T increases (Vanmarcke, 2010; Fenton and Griffiths, 2008). The concept of 
variance reduction due to spatial averaging is synonymous with the ‘change of support’ concept familiar to resource 
geologists. 

The variance function for a one-dimensional process can be calculated as follows (Vanmarcke, 2010): 
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Where ρ(τ) is the correlation function, which for a ‘spatially homogeneous’ and stationary random field is related to 
the variogram by the following: 

�(�) = 1 − �(�)
��

( 6 ) 

Conversely, the correlation function may be derived from the variance function with the derivative: 
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The variance reduction function for the exponential variogram model (equation 4) can be written: 
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For the exponential model, the only inputs to the variance function are θ and T. If we have a variogram model, we 
can now calculate the reduced variance, σ2T, for any size one-dimensional spatial average, T: 

��� = ��(�) � ���     � � �������� ��������  ( 9 ) 

Note that the full measured variance of a parameter (σ2, equal to σ2V +σ2N) is not present in equation 9. A notable 
finding of the variance function is that a spatial average of any size will theoretically reduce the nugget variance (σ2N) 
to zero; this implies that the components of the variance that originate from high frequency fluctuations and inherent 
randomness will be ‘averaged out’ so long as the spatial average size is larger than the sampling interval of the data 
that was used to generate the variogram model. The other components that contribute to the nugget variance, 
measurement error and positional error, are not representative of actual in situ variation and therefore it is also not 
desirable to include them in estimates of variability for a probabilistic geotechnical model. For some projects, 
eliminating the nugget variance will significantly reduce the design variance used for analysis.  

A multi-dimensional variance function can be expressed as the product of multiple one-dimensional variance 
functions as follows (Vanmarcke, 1977): 

��(�� �� �) = ��(��) ��������(��) ( 10 ) 

Each factor in equation 10 is the one-dimensional form of the variance function shown in equation 8, where x, y, and 
z represent the side lengths of a rectangular box. The exponential variance functions for one, two and three 
dimensions are plotted in Figure 7. The spatial average size and variance has been normalized to make the plot 
universal. Note that the variance is reduced more quickly as the number of dimensions of the spatial average 
increases. 



2.2. STATISTICAL UNCERTAINTY 

When data is limited, it is important to recognize that our estimation of the mean is itself a random variable. It is quite 
common in geotechnical engineering to only sample a very small portion of the population. Therefore, it is necessary 
to assess how accurate our estimation of the mean actually is relative to the true population mean. The variance and 
standard deviation of the sample mean estimate are defined as follows (Ang and Tang, 1975): 

��� = �� �� ����������� = �
√�� ( 11 ) 

As the total number of samples (n) is increased, eventually the mean of the samples will converge on the true mean 
of the population. The above equations assume that all samples are independent from each other; however, as 
demonstrated by the variogram, samples near each other might in fact be correlated. If the samples are correlated 
to one another, the uncertainty of the estimated mean will actually be significantly greater than equation 11 would 
indicate. Fortunately, so long as the sampling domain size is significantly larger than θ, the above equations remain 
valid estimators. 

Figure 7. One-, two-, and three-dimensional variance functions for the exponential model 

2.3. TRANSFORMATION UNCERTAINTY 
It is difficult to directly measure rock mass strength (geotechnical tests are typically not representative of in-situ rock 
mass strengths), and most practitioners therefore employ a transformation model to estimate rock mass strength 
from parameters that are more easily measured. Transformation models select the most important/abundant 
parameters as inputs, and then apply an empirical transform to estimate rock mass strength. Examples of 
transformation models are the Hoek-Brown strength criterion (Hoek et al., 2002) and the CNI modulus reduction 
method (Call et al., 2001; Read and Stacey, 2009). Transformation models provide approximations of the true rock 
mass strength. Even with an unlimited geotechnical budget, the true rock mass strength could never be determined 
with absolute certainty because of the simplifications that are required to make a transformation model practical; a 
transformation model would not prove useful if every parameter that affected rock mass strength was required as an 



input. For example, two different rock masses could have the same GSI, uniaxial strength, and mi value, and we 
would still expect that their true in situ shear strengths not be exactly the same because of transformation uncertainty. 

Transformation uncertainty may be estimated with the coefficient of variation (COV), which scales the standard 
deviation by the mean: 

  ( 12 ) 

Researchers have estimated COVR values between 10 and 35 percent for geotechnical transformation models 
(Wiles, 2006; Phoon and Kulhawy, 1999). Exact COVR values are not known. It is advisable to select a higher COVR 
value for greenfield sites where experience is limited. For well-developed projects with calibration of previous 
excavation performance, lower values of COVR may be appropriate. 

3. SPATIAL CORRELATION OF ROCK MASS PARAMETERS
The properties of each input parameter to the rock mass strength transformation model must be evaluated separately. 
The input parameters are separated into two groups: intact and fracture strength, and intensity of rock-mass 
fracturing. 

3.1. SPATIAL CORRELATION OF INTACT AND FRACTURE STRENGTH 
The spatial variability of strength testing data from multiple projects were evaluated to determine typical θ values for 
intact and fracture shear strength. A summary of the datasets evaluated is shown in Table I and the variograms are 
plotted in Figure 8. Most of the variograms exhibit ‘pure nugget effect’ (a flat, horizontal variogram line), which implies 
that θ is smaller than the closest sampling distance. The only project with an interpretable variogram is the Yima 
North dataset (Wang et al., 2000) with a measured θ of 9 meters.  Other studies have also found large nugget effects, 
but sometimes with large θ values (Mayer and Stead, 2017). 

When the θ distance is significantly smaller than the slope being analyzed, a multitude independent samples will be 
averaged together over the failure zone, significantly reducing the natural variability variance (σ2V). For example, if 
we assume a θ of 9 meters and that the nugget variance is equal to 50 percent of the total variance (properties of 
the Yima North sandstone), only a 14-meter spatial average in two dimensions or an 8-meter spatial average in three 
dimensions is required to reduce the measured σ2V by 90 percent (using equations 8, 9, and 10). Recall that the 
nugget variance (σ2N) is reduced to zero for any nominal spatial average size larger than the sample spacing (section 
2.1.2). 

It is proposed that the natural variability of intact and fracture shear strength can be disregarded in most cases when 
the slope height under investigation is significantly greater than θ. The statistical uncertainty (variance of the mean) 
must still be considered even if natural variability is not. A limited budget is typically available for geotechnical testing, 
and therefore the variance of the mean is often of significance for intact and fracture shear strength uncertainty 
estimates. Notwithstanding, if sufficient data is present to plot the variogram for a specific project, it should be verified 
that θ is indeed very small relative to the slope analysis. 



Figure 8. Variograms of intact and fracture shear strength testing data 

Table I Summary of intact and fracture direct shear data 

Project Lithology Test 
Type 

Number
of Tests Mean Variance Unit of Variance θ 

Yima North Sandstone Point 
Load 100 32.5 570 MPa (Is50 * 24) 9 m 

Chilean 
Mine Diorite Point 

Load 339 130.9 2 460 MPa (Is50 * 24) < 10 m 

Peñasquito Diatreme Breccia UCS 53 159.2 1 907 MPa < 10 m 

SW USA Cenozoic Monzonite Point 
Load 308 43.2 790.2 MPa (Is50 * 24) < 10 m 

Copper- Pre-Cambrian 
Granite UCS 396 92.5 2 055 MPa < 10 m 

Porphyrys Pre-Cambrian 
Granite 

SSDS 70 239.8 966 kPa (τ @ 300 kPa 
σn) < 20 m 



3.2. SPATIAL CORRELATION OF FRACTURE INTENSITY (RQD) 
Parameters that quantify fracture intensity, such as RQD (rock quality designation) (Deere, 1968) or the GSI structure 
rating, often demonstrate sufficient spatial correlation to create interpretable and useful variogram models. RQD is 
most often utilized for variography since these data are recorded at most sites, and can also be used to estimate 
other rock-mass parameters such as fracture frequency or the GSI structure rating (Palmstrom, 2005; Hoek et al., 
2013). So long as RQD values are either weighted by the drill interval length or composited into intervals of equal 
length, it is valid to arithmetically average RQD values. 

3.2.1 Example Variograms – Granite Pluton 
The RQD database from a Cretaceous age granite pluton located at a North American mine is used to demonstrate 
typical variograms of fracture intensity. The three-dimensional isotropic experimental variograms for the granite are 
presented in Figure 9. Three geotechnical domains have been identified in the granite and so the experimental 
variogram is calculated for each separately. An exponential variogram model is fit to domain #2 (argillic altered 
granite) for the purposes of this example, as shown in Figure 9. Note that the nugget variance accounts for about 35 
percent of the total variance, and the modeled θ is 28 meters. 

4. PRACTICAL APPLICATION FOR A LIMIT-EQUILIBRIUM ANALYSIS
The data from the granite domain #2 is used to demonstrate the workflow for a two-dimensional limit-equilibrium 
slope analysis with consideration of the effects of spatial averaging. 

4.1. ESTIMATION OF MEAN ROCK-MASS STRENGTHS 
The measured intact, fracture, and RQD properties of the argillic altered granite (domain #2) are shown in Table II. 
We will assume that the θ value of intact and fracture strength parameters is small relative to the size of the slope, 
and therefore only the standard deviation of the mean is required (Section 3.1). The mean RQD in domain #2 is 24.4 
percent. 
For this example, the rock mass strength is estimated using CNI modulus reduction method (Call et al., 2001; Read 
and Stacey, 2009). The Hoek-Brown method could also be used. The CNI method is defined by the following 
equations, with cohintact and phiintact estimated from uniaxial and triaxial tests and cohfracture and phifracture estimated 
from small scale direct shear tests of natural fractures: 

  ������������ � ������������� + (� � ��)�����������]  ( 13 ) 
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For the granite domain #2 properties the estimated mean rock mass strength is: 
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Figure 9. Variograms of RQD data for the granite pluton at a gold mine 

Table II. Summary of measured intact, fracture, and RQD properties 

Rock Type 

Intact rock strength Fracture strength RQD 
coh [kPa] phi [deg] coh [kPa] phi [deg]  Variogram Model 

μ σμ μ σμ μ σμ μ σμ μ θ [m] σ2N (σN) σ2V (σV) 

Granite 
Domain #2 3740 1509 33.6 3.5 41.4 6.6 20.6 2.1 24.4 28.0 215.6 

(14.68) 
406.5 

(20.16) 

4.2. ESTIMATION OF VARIABILITY OF ROCK MASS STRENGTH 
Since rock mass strength may not be measured directly, distributions of measurable rock properties must be 
randomly sampled to generate the expected distribution of rock mass strength. Considering that any spatial average 
will reduce the nugget variance to zero, only the variance of the mean is required to define the variability of intact 
and fracture strength. The RQD database for granite domain #2 contains thousands of drill intervals and therefore 
the variance of the mean is assumed to be zero.  The variance reduction function (equations 8 and 10) is used to 
reduce the long-scale variation of the RQD based on the spatial average size; it is assumed that the spatial average 
length along the slip surface is equal to the height of the slope (h), and that the width of the slip surface (w) is equal 
to half of the slope height, or: 

     ( 16 ) 

The results of the variance reduction of RQD for various slope heights between 40 and 180 meters are presented in 
Table III. The estimated variance and standard deviation values for the rock-mass strength by slope height 
(considering the measured intact, fracture, and RQD properties of the granite presented in Table II) are also shown 
in Table III. All input parameters were assumed to follow the log-normal distribution, and the RQD values were limited 
to a maximum value of 100. The sampled rock mass strength friction angles were not permitted to go below the 



measured fracture shear strength (20.6 degrees) since this defines the potential lower limit of the rock-mass strength. 
A transformation model COVR of 0.1 was assumed to arrive at the final estimated rock-mass strength variances 
shown on the far right in Table III. Note how the predicted variability of the rock-mass strength is reduced as the 
slope height grows larger. 

Table III. Summary of estimated rock mass strength variability by slope height 

Slope 
Height 

(m) 

Γ2(h) 
(eq. 
8) 

Γ2(w) 
(eq. 
8) 

σ2T-RQD (σT-

RQD) 
(eq. 16) 

Predicted variability of rock-mass strength 
Before application of σR After σR (eq. 12) 

σ2 (σ) of 
coh (kPa) 

σ2 (σ) of 
phi (deg) 

Corr. 
Coeff. 

(coh-phi) 

σ2 (σ) of 
coh (kPa) 

σ2 (σ) of 
phi (deg) 

40 0.469 0.655 125 (11.2) 11700 (108.2) 3.61 (1.90) 0.19 16360 (127.9) 18.1 
(4.25) 

60 0.359 0.549 80.2 (8.95) 8460 (91.98) 3.50 (1.87) 0.13 12480 (111.7) 17.8 
(4.22) 

90 0.263 0.436 46.6 (6.83) 6754 (82.19) 3.39 (1.84) 0.07 10390 (101.9) 17.6 
(4.19) 

120 0.206 0.359 30.1 (5.49) 6135 (78.32) 3.35 (1.83) 0.05 9613 (98.05) 17.5 
(4.18) 

180 0.143 0.263 15.3 (3.91) 5700 (75.50) 3.35 (1.83) 0.02 9067 (95.22) 17.5 
(4.18) 

4.3. LIMIT-EQUILIBRIUM ANALYSIS RESULTS 
Two-dimensional limit-equilibrium analysis was performed for the slope heights listed in Table III with slope angles 
of 35, 45, and 55 degrees. The FOS and Pf values are plotted against the slope height in Figure 10. As expected, 
the FOS decreases with slope height and the Pf increases with slope height. 

     (a)                                                                           (b) 

Figure 10 Plots of a) Slope height versus factor of safety, and b) Slope height versus probability of failure 

A scatterplot of FOS versus Pf is shown in Figure 11. Note that there is a wide range of Pf values observed for 
approximately the same FOS value. Larger slopes tend to have lower Pf values than smaller slopes (for similar 
FOS values), as shown in Figure 12. 



Figure 11 Plot of factor of safety versus probability of failure 

        (a)                                                                                          (b) 
Figure 12. Results of the probabilistic limit-equilibrium analysis for a) Slope with height of 180 meters and 

angle of 35 degrees, and b) Slope with height of 60 meters and angle of 55 degrees 

5. CONSIDERATIONS AND LIMITATIONS
1. Most large documented slope failures in rock involve at least some structural component. The techniques

described in this paper focus on input variables to estimate rock-mass properties. Structural weaknesses
still must be considered and incorporated into rock slope analyses. There is no substitute for good
engineering judgement in the determination of the critical failure mechanism of a slope.

2. The variogram is also required for block model generation with kriging, and is useful for determining
optimum sampling intervals or drill hole spacing (since θ is the average distance between independent
samples).



3. The analyses presented in this paper assume an isotropic variogram structure. It is possible that given 
the inherent anisotropic nature of rock, the variogram may also be anisotropic. This may be tested by 
performing directional variography (Isaaks and Srivastava, 1989; Cressie, 1991) if sufficient data is 
available.  

4. The variogram should not be estimated from interpolated or extrapolated datasets such as block models. 
Interpolation techniques may impart the appearance of spatial correlation to a dataset when none may 
exist. 

5. Limit-equilibrium methods may have difficulty locating the critical probabilistic failure surface. The critical 
deterministic failure surface may not coincide with the critical probabilistic failure surface. Li and Lumb 
(1987) state that the two critical failure surfaces are typically close to one another, but this is likely 
dependent on the geometry of the slope and variability of parameters. This potential issue may be 
overcome with the Random Finite-Element Method (Fenton and Griffiths, 2008) and conditional 
simulation. 

6. For probabilistic analysis, all sources that contribute significant uncertainty to model parameters deserve 
consideration; this may include additional uncertainty regarding lithological boundaries, alteration 
boundaries, or pore water pressure. The Large Open Pit study (Read and Stacey, 2009) estimated that it 
is not uncommon for pore water pressure estimations to be over or under by a factor of 2. 

7. Although it may be tempting to directly measure the variance reduction function (instead of estimating θ 
from the variogram), the measured variance reduction function is very sensitive to the spatial density of 
the data. The variogram is a more robust estimator of θ in widely spaced data fields, as are typically 
encountered in geotechnical engineering. 

8. Fenton and Griffiths (2008) have noted that it may be non-conservative to assign the arithmetic mean 
strength to an entire slope model, since the failure path will preferentially develop through the weakest 
materials. The influence of this effect will depend on θ and the amount of nugget variance. 

9. The estimated variance of rock mass strength will also depend upon the proximity of measured data. This 
effect may be captured through conditional simulation kriging (Isaaks and Srivastava, 1989; Fenton and 
Griffiths, 2008). 

6. CONCLUSIONS 
Probabilistic slope analysis requires that assumptions be made regarding the spatial variability of rock strength 
parameters.  If spatial variability is not considered, a probabilistic slope analysis can result in either over- or under-
estimation of the probability of failure. 

The standard deviation of a measured parameter is not directly applicable to a slope analysis, since it is the average 
shear strength along a failure surface that controls the strength of a slope and not the ‘point-to-point’ variability. The 
variance of a spatial average will always be less than the variance of the individual data points. The variability of the 
spatially averaged shear strength decreases for increasing spatial average size (or slope size). The variogram and 
the variance reduction function can be used to quantify how much the variance will be reduced for any spatial average 
size. 

Based on the projects analyzed for this research, it is proposed that the natural variability of intact and fracture shear 
strength can be disregarded in most cases when the model domain is significantly greater than scale of fluctuation. 
The statistical uncertainty (variance of the mean) must still be considered even if natural variability is not.  If sufficient 
data is present to plot the variogram for a specific project, it should be verified that the scale of fluctuation is indeed 
very small relative to the slope analysis. 

Equation 2 and Figure 3 account for many factors that influence rock-mass strength uncertainty: 

 If a larger spatial average size is analyzed, the long-scale variance (σ2V) is reduced correspondingly by 
the variance reduction function to account for the effect of spatial averaging. 

 If more samples are taken to better estimate the input parameters, the variance of the mean is 
correspondingly reduced. 

 If there is calibration to previous excavation performance, the transformation model uncertainty may be 
reduced. 



 The nugget variance (σ2N) is reduced to zero for any nominal spatial average size larger than the sample
spacing of the data that was used to create the variogram model. This excludes the portion of the variance
caused by small-scale variation, inherent randomness, and measurement error.

Another factor that influences the uncertainty of a parameter estimate is the proximity of measured data; conditional 
simulation kriging is required in order to account for this effect. 

Separating the uncertainty of rock-mass parameters into the components of natural variability, statistical uncertainty, 
and transformation uncertainty better informs the practitioner where to allocate future efforts to have the most impact 
to reduce uncertainty. 

As a standard of practice, the assumptions regarding the spatial correlation of random variables should always be 
documented and presented alongside probabilistic global slope analyses. 
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